Data Quality Mining using Genetic Algorithm
نویسندگان
چکیده
Data quality mining (DQM) is a new and promising data mining approach from the academic and the business point of view. Data quality is important to organizations. People use information attributes as a tool for assessing data quality. The goal of DQM is to employ data mining methods in order to detect, quantify, explain and correct data quality deficiencies in very large databases. Data quality is crucial for many applications of knowledge discovery in databases (KDD). In this work, we have considered four data qualities like accuracy, comprehensibility, interestingness and completeness. We have tried to develop Multi-objective Genetic Algorithm (GA) based approach utilizing linkage between feature selection and association rule. The main motivation for using GA in the discovery of high-level prediction rules is that they perform a global search and cope better with attribute interaction that the greedy rule induction algorithms often used in data mining.
منابع مشابه
A Technique for Improving Web Mining using Enhanced Genetic Algorithm
World Wide Web is growing at a very fast pace and makes a lot of information available to the public. Search engines used conventional methods to retrieve information on the Web; however, the search results of these engines are still able to be refined and their accuracy is not high enough. One of the methods for web mining is evolutionary algorithms which search according to the user interests...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملDesigning an intelligent system for predicting chromosomal genetic diseases using data mining
Background and Aim: Today we are witnessing tremendous advances in medical data mining. The data, by analyzing and discovering the relationships between them, can lead to algorithms that help us prevent or treat many diseases. Meanwhile, genetic diseases have attracted a large part of the attention of the medical world because the birth of children with genetic disorders imposes a great financi...
متن کاملOptimization of Cement Spacer Rheology Model Using Genetic Algorithm (RESEARCH NOTE)
The primary cement job is a critical step in successful well completion. To achieve effective cementing job, complete mud removal from the annular is recommended. Spacer and flushers are used widely to achieve this goal. This study is about weighted cement spacer systems containing a surfactant package, weighting agent and rheological modifiers. Weighted spacer systems are utilized when a high ...
متن کاملTuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm
Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...
متن کاملQoS-Based web service composition based on genetic algorithm
Quality of service (QoS) is an important issue in the design and management of web service composition. QoS in web services consists of various non-functional factors, such as execution cost, execution time, availability, successful execution rate, and security. In recent years, the number of available web services has proliferated, and then offered the same services increasingly. The same web ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009